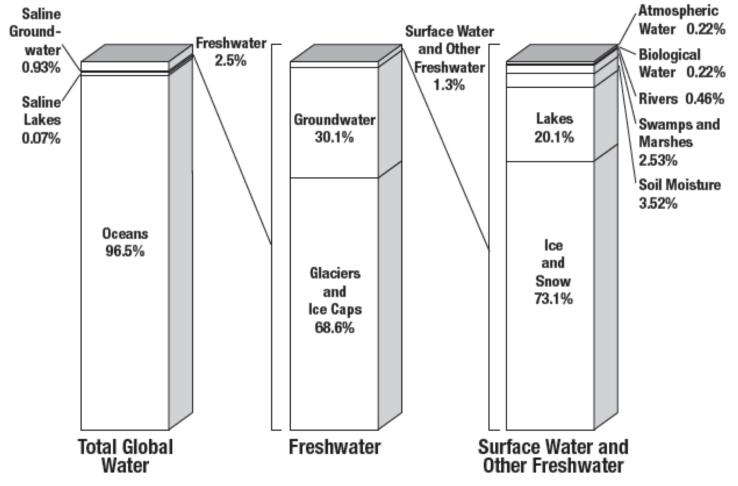
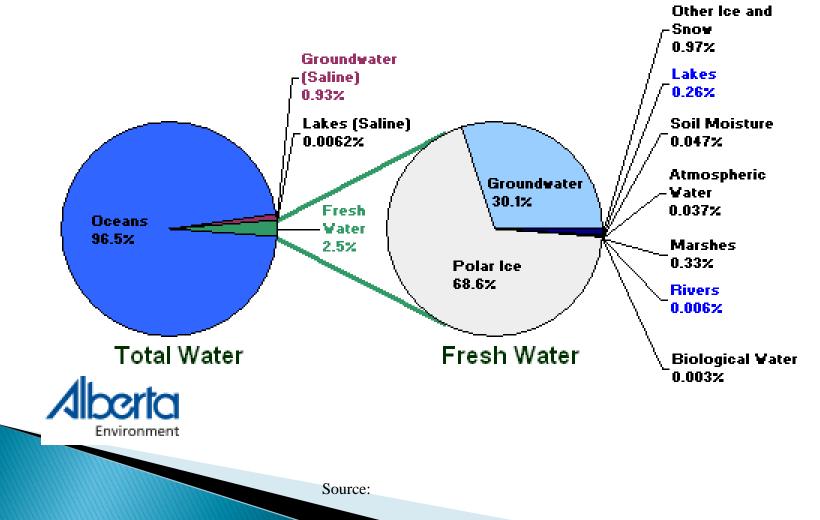
Water Treatment Engineering: Fundamental Concepts and Definitions

Dr. Nidal M. Hussein


-1)

- The hydrologic cycle describes the movement of water in nature
- The total available water resources in the world are estimated in the order of 43,750 km³/year
 - The majority is locked up in the Antarctic ice sheet
 - Americas have 45 %, Asia 28 %, Europe 15.5 % and Africa 9 % of the world's total freshwater resources
- Freshwater is about 2.5% of the total water on Earth
- Humans intervene in the hydrologic cycle (Fig.

Water source	Water volume, in cubic miles	Water volume, in cubic kilometers	Percent of fresh water	Percent of total water
Oceans, Seas, & Bays	321,000,000	1,338,000,000		96.5
Ice caps, Glaciers, & Permanent Snow	5,773,000	24,064,000	68.7	1.74
Groundwater	5,614,000	23,400,000		1.7
Fresh	2,526,000	10,530,000	30.1	0.76
Saline	3,088,000	12,870,000		0.94
Soil Moisture	3,959	16,500	0.05	0.001
Ground Ice & Permafrost	71,970	300,000	0.86	0.022
Lakes	42,320	176,400		0.013
Fresh	21,830	91,000	0.26	0.007
Saline	20,490	85,400		0.006
Atmosphere	3,095	12,900	0.04	0.001
Swamp Water	2,752	11,470	0.03	0.0008
Rivers	509	2,120	0.006	0.0002
Biological Water	269	1,120	0.003	0.0001
Total	332,500,000	1,386,000,000	-	100


Source: Gleick, P. H., 1996: Water resources. In Encyclopedia of Climate and Weather, ed. by S. H. Schneider, Oxford University Press, New York, vol. 2, pp.817-823.

Distribution of Earth's Water

Source: Igor Shiklomanov's Chapter, "World Fresh Water Resources" in Peter H. Gleick (editor), 1993, Water in Crisis: A Guide to the World's Fresh Water Resources.

Distribution of Global Water

- Water" used to describe pure (or close to pure) water
- WasteWater consist of waste (or pollutants or contaminants) + Water
- Closest to pure water available naturally is water vapor (not water runoff)
- The presence of pollutants (also referred to as contaminants, impurities or waste) limits the use of water

- Impurities can be
 - Disssolved solids
 - Suspended solids
 - Settleable
 - Non-settleable
 - Colloidal solids
- Impurities can also be divided into organic and inorganic
- The aim of water treatment is to remove sufficient quantities of impurities to meet intended usage

- Recall from slide 5 and 6 that out of the 2.5% of water that represent fresh water, only surface and ground water are practical choices for water supplies (less than 1 % of total water on earth)
- Surface water is exposed to pollution (natural and human activities) and usually contaminated and can not be used directly.
- Groundwater is naturally protected by geological formation. Occasionally further treatment is needed due to accidental contamination

- 70% of public water supplies use surface-water
 30% withdraw groundwater for public supply
- In some areas, water is not metered at homes (customers are charged a flat rate for water use)
 - This can promote water waste, as consumption is not correlated to cost
- Use of various water sources requires an understanding of :
 - Water-supply choices
 - Degree of treatment required prior to recharge
 - Water-quality issues for the surface water and groundwater

- Groundwater is a unique resource dependent on:
 - 1. Precipitation
 - 2. Recharge
 - 3. Evaporation
 - 4. and hydraulic connection with rivers, springs, and wetlands
- Recharge is increased by enhancing connectivity between surface-water to groundwater recharge and by direct injection

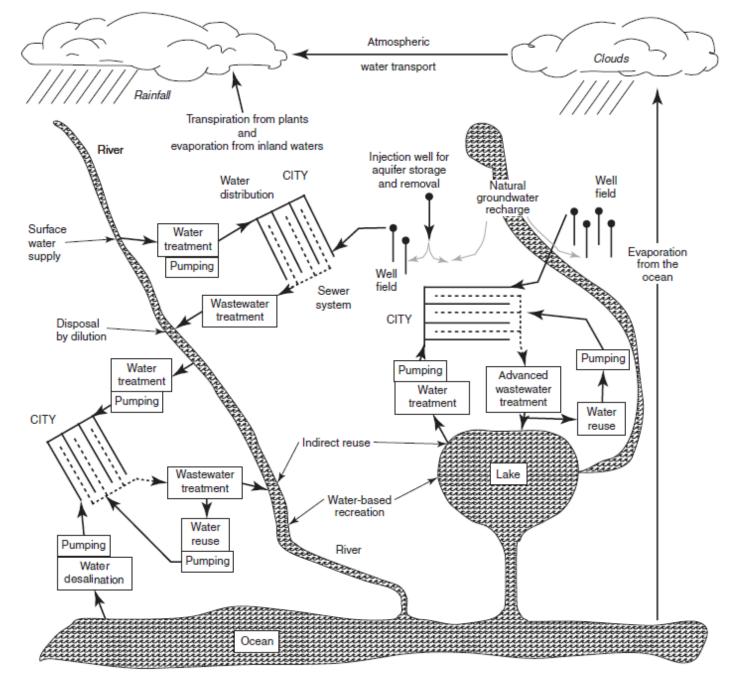
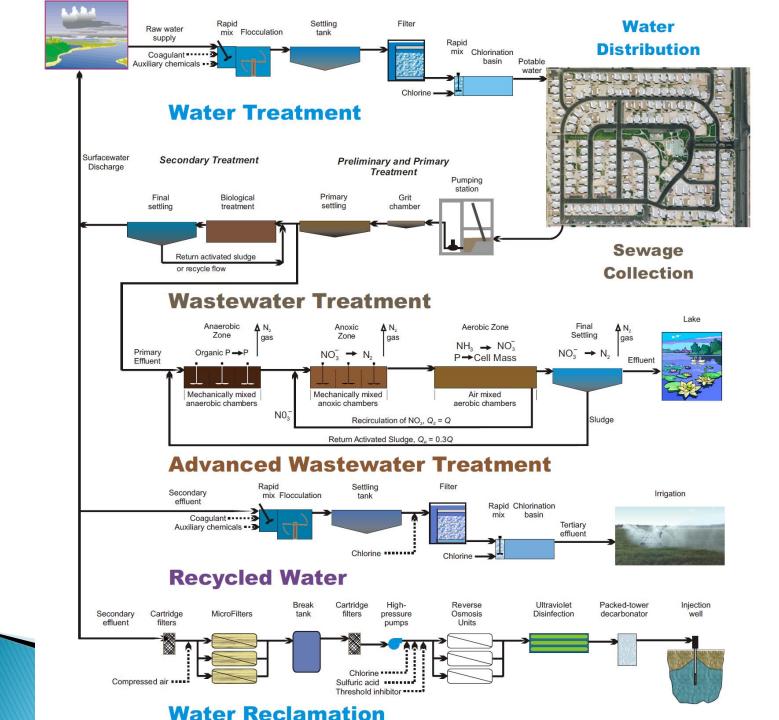
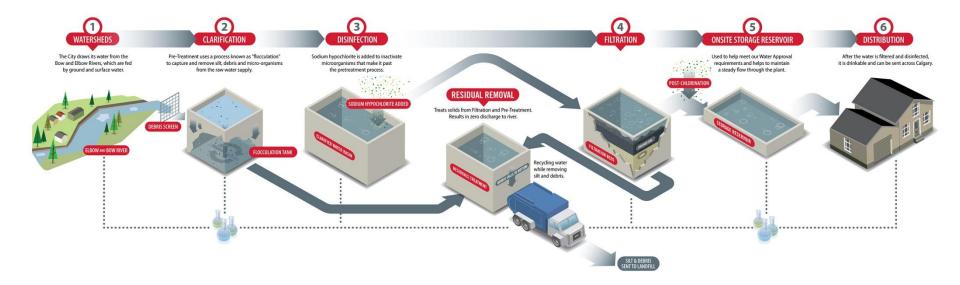




FIGURE 1-3 Integration of natural and human-generated water cycles.

- Advanced water and wastewater treatment by mechanical plants has been introduced into the artificial water cycle
- Water treatment is any process that improves the <u>quality</u> of water to make it more acceptable for a specific end-use.
- The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment.
- Water treatment <u>removes</u> contaminants and undesirable components, or <u>reduces</u> their concentration so that the water becomes fit for its desired end-use (Wiki definition)

The Water Treatment Process

Source: http://www.calgary.ca/UEP/Water/Scripts/Watertour/Images/Water-treatment-process-3085px.jpg

WASTEWATER TREATMENT

DIGESTION

Solids from the bottom of the sedimentation tank enter digesters that reduce volume while destroying harmful bacteria

DISPOSAL

or used as fertilizer

Solids are sent to landfills

AERATION

Settled wastewater flows to bioreactors where, through a series of stages, beneficial bacteria break down organic material and clean the water

DISCHARGE

Cleaned water is discharged into water supply sources such as streams and groundwater

DISINFECTION

The cleaned water is treated with chlorine or ultraviolet light to kill remaining harmful bacteria

CLARIFICATION

Effluent is gravity fed through secondary clarifiers where beneficial bacteria are settled out and returned to the aeration tank

www.tataandhoward.com

©2015 Tata & Howard, Inc. | All Rights Reserved

- Groundwater systems throughout the U.S. have been permanently lowered by withdrawals that exceed recharge
- The role of engineering has changed with the evolving demands for water
- Increased water use has created environmental consequences resulting in the need to engineer

- In industrialized regions of the world, wastewater is treated before being discharged
- In non-industrialized regions, concentrated pollution is often discharged into freshwater supplies
 - Much of the world does not have access to clean, safe water
- About 35% of U.S. water use is unsustainable
- Humans intervene in the hydrologic cycle, generating artificial water cycles (Fig. 1-3)

- Focus has shifted to sustainability and the need to sustainably create new supplies...
 - Through water reuse and desalination
 - Balancing demand/supply, and human/ecosystem needs
- Surface water, climate change & groundwater are connected
 - Managed with appropriate understanding & analytical tools

Sustainability is the ability to balance natural, physical, social, and economic environments to meet the needs of the present without compromising future generations

- People must learn to live within the capacity of the earth to treat wastes and provide for life's resources
 - The earth has a limited capacity to absorb wastes
- Carbon footprint is the total greenhouse gas emissions caused by individuals, organizations, production and waste treatment
 - Typically reported in equivalent units of CO₂

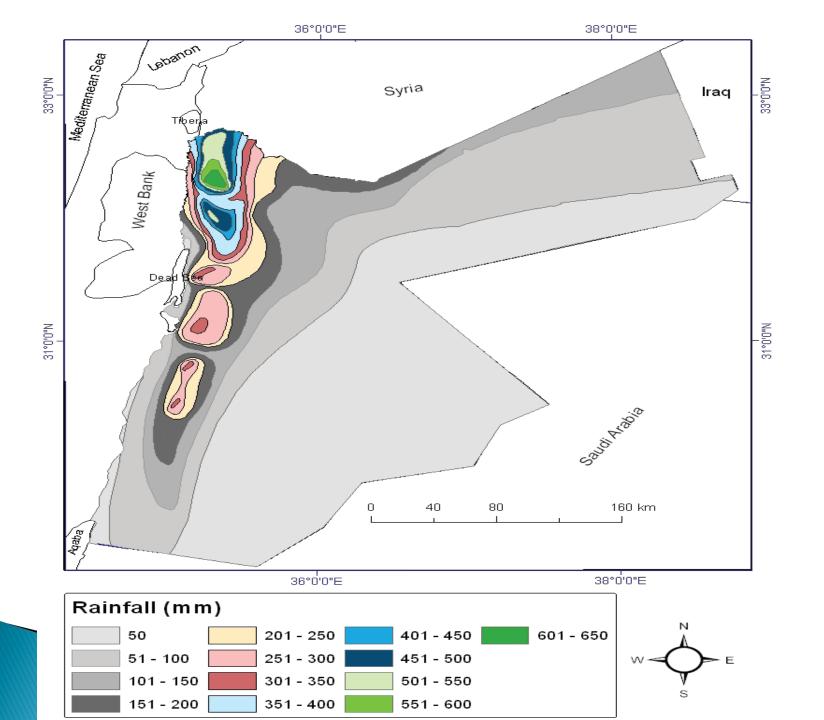
- The Kyoto Protocol defines legally binding limits and timetables for reducing GHG emissions
 - Federal/state mandates & initiatives to be more sustainable will increase over the next several years
- Western U.S. states and Canadian provinces are developing a regional cap-and-trade program
 - An overall limit on GHG emissions will be established and facilities will be able to trade permits (allowances) to emit

- Climate change has the potential of reducing available water supplies in many areas
 - As a result, it will be necessary to reduce water demands and/or develop new supplies.
- Wastewater treatment presents opportunities to reduce the carbon footprint with a goal of becoming carbon neutral
- Water conservation & energy efficiency have always been part of the water and wastewater industry

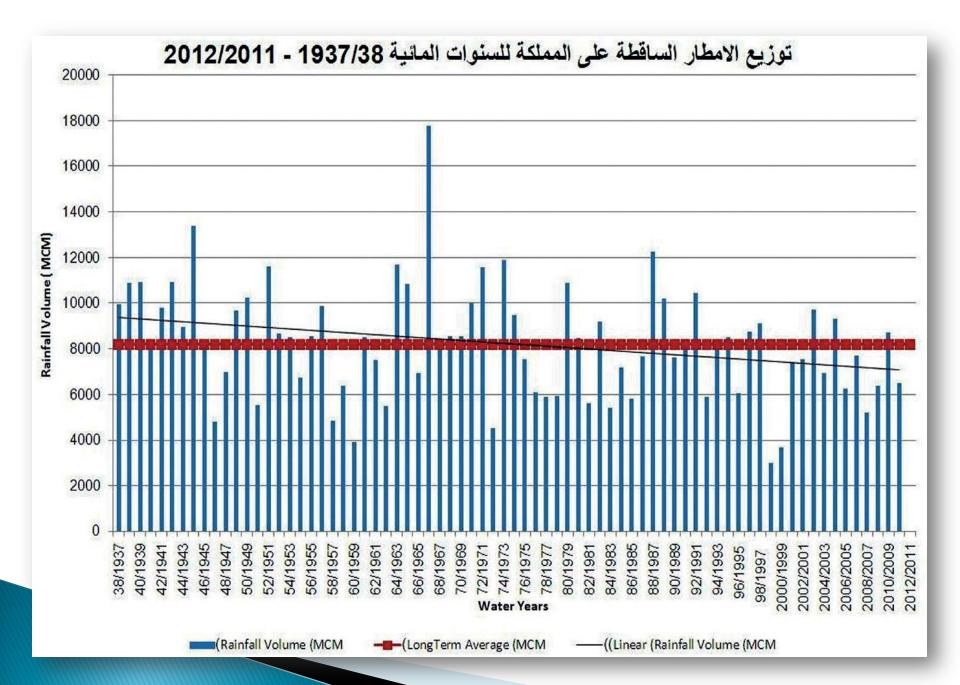
- While reducing energy demand, wastewater treatment plants can also be a source of energy production
 - Methane produced by anaerobic digestion is a source of renewable energy created during wastewater treatment
- There are also sustainable options for management of the solids at a wastewater treatment plant.
 - Biosolids can be composted and used on agricultural land or bagged and sold to the public

- Advanced systems that reclaim wastewater to nearly original quality have encouraged direct reuse of water
- Direct return for potable water is not encouraged due to hazards from viruses & traces of toxic substances
 - Another problem is buildup of dissolved salts that can be removed only by costly demineralization processes
- With the increase in demand for freshwater, direct water reuse by some metropolitan areas may be realistic in the future

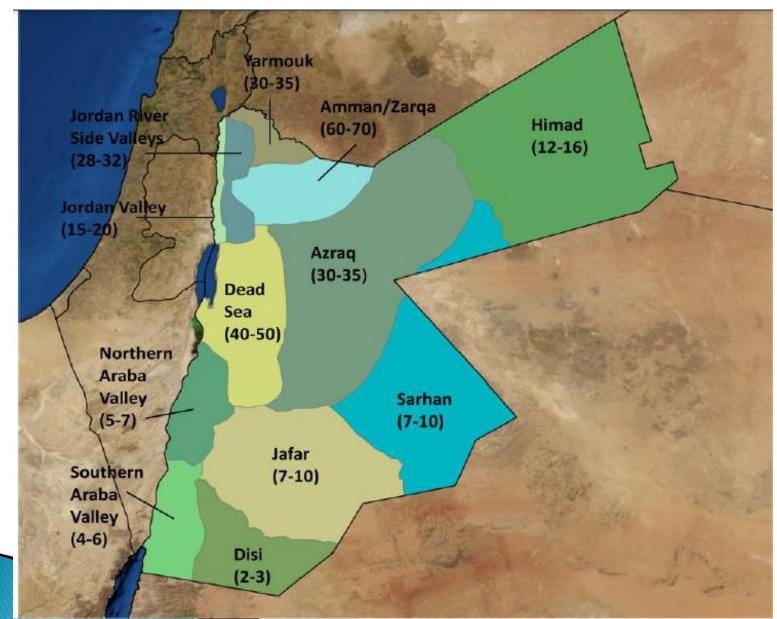
- The basic sciences of chemistry, biology, hydraulics, and hydrology are the foundation for understanding water supply, wastewater treatment & sustainability
- Advanced wastewater treatment incorporates both biological unit operations and chemical processes that are similar to those applied in water treatment

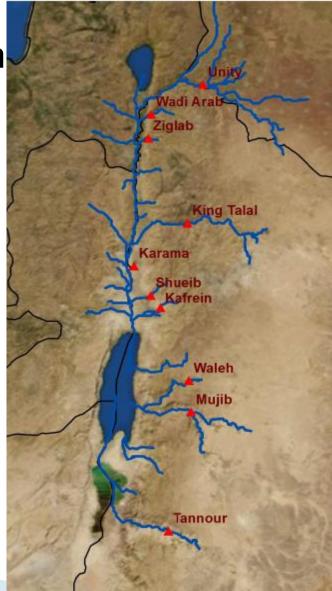

INTRODUCTION Water & Jordan Few facts

- In simple words
 - We DO NOT have lots of water
 - We DO have problem

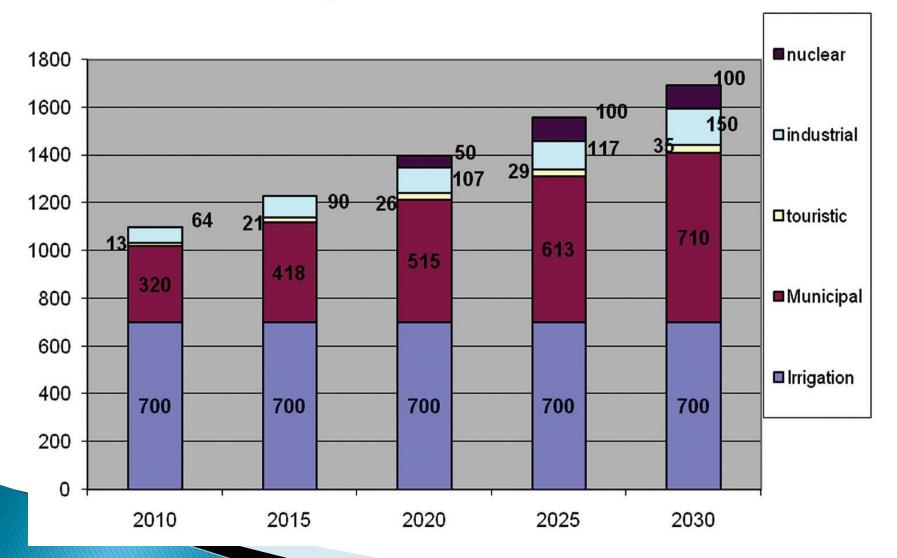

• BIG ONE

- International standard (int. health organization)
 - Water poverty line is 1000 cubic meter /capita/yr
 - In Jordan 120 cubic meter /capita/yr
 - Used to be 3600 cubic meter /capita/yr (1946)
 - As of March 7th, 2015:
 - Irbid, 85 cubic meter /capita/yr
 - Jerash, 77 cubic meter /capita/yr
 - Mafraq, 144 cubic meter /capita/yr
 - Ailun 67 cubic meter /capita/yr

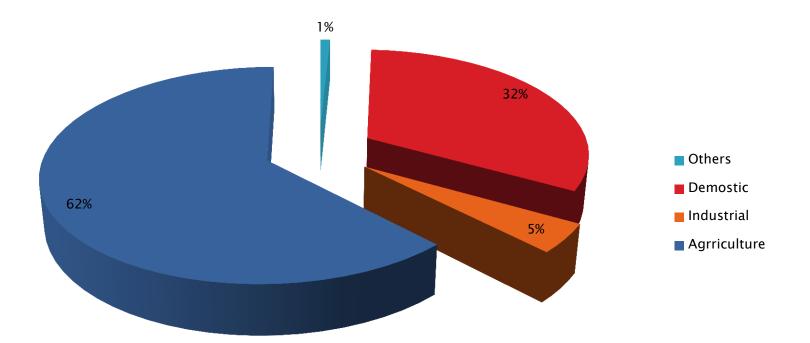

- The Second poorest country in the world in water
- Combine with energy problem, Jordan is the poorest in the world when it comes to water
- 91% of Jordan is either dry or semi-dry (less than 200 mm)
- 5.7% semi dry (201–300 mm/yr)


- Rainfall rate in Jordan (5.8–11) billion cubic meter / yr
- Long term average 8.522 billion cubic meter/yr
- About 90 % evaporates
- > 240 290 million cubic meter / yr charge groundwater sources

Ground water in Jordan


713 million cubic meter/yr turn into surface water (mainly Yarmouk river, some valleys, seasonal flows

Dam	Storage (MCM/year)		
Unity Dam	110.0		
Wadi Arab	17.0		
Ziglab	3.8		
King Talal	75.0		
Karama	55.0		
Shueib	1.4		
Kafrein	8.4		
Waleh	9.3		
Mujib	35.0		
Tannour	16.8		
Total	331.7		


Water demand in Jordan

Projected Demands 2010 -2030

Water demand in Jordan

Water consumption percentage according sectors in jordan 2004

2004

Most of previous material has been taken from

Water and Wastewater Technology

Seventh Edition

Mark J. Hammer

Mark J. Hammer, Jr.

Thank You